Die korrekte Bestimmung des Base Excess (BE, mmol/l) im Blut

R. Zander

Institut für Physiologie und Pathophysiologie der Universität Mainz

Fragestellung

Der Base Excess des Blutes (BE, mmol/l) gibt nach Siggaard-Andersen (1) diejenige Menge an H⁺ oder OH⁻ an, die notwendig ist, den vom Normalwert abweichenden pH-Wert des Blutes mit HCl oder NaOH bis 7,400 zu titrieren, wobei eine Temperatur von 37 °C und ein CO₂-Partialdruck (pCO₂) von 40 mmHg einzuhalten sind. Damit ist der BE, neben dem sogenannten Standard-Bikarbonat, die klassische nicht-respiratorische Größe des Säure-Basen-Status, die ursprünglich nomographisch, heute rechnerisch aus den drei Meßwerten pH und pCO₂ (mmHg) sowie der Hb-Konzentration (cHb, g/dl) von jedem Blutgas-Analysator ermittelt wird. Entscheidend aber ist, daß der BE diejenige klinische Größe ist, die für eine mögliche therapeutische Korrektur aller nichtrespiratorischen Störungen des Säure-Basen-Haushalts benutzt wird.

Während allgemein akzeptiert ist, daß sich der BE bei respiratorischer Änderung des pCO₂ und daraus resultierender Änderung des pH definitionsgemäß nicht ändern darf, ist diese Frage für eine Änderung des O₂-Partialdruckes (pO₂, mmHg) bzw. der O₂-Sättigung (sO₂, %) und daraus resultierender Änderung des pH in der ursprünglichen Literatur sowie zwischen den verschiedenen Herstellern von Blutgas-Analysatoren strittig. Ziel dieser Untersuchung ist daher, mögliche Unterschiede zwischen den verschiedenen Blutgas-Analysatoren bezüglich der BE-Berechnung zu ermitteln und, wenn notwendig, Verbesserungsvorschläge zu unterbreiten. Auf die Problematik einer Berechnung eines BE für die Extrazellulärflüssigkeit wird hier nicht eingegangen.

Methodik

Die teilweise deutlich differierenden Formeln zur Berechnung des sogenannten oxygenierten BE (sO₂ 100%) und des aktuellen BE (sO₂ aktuell) von insgesamt 5 Herstellern (AVL, Ciba Corning, Intrumentation Laboratory, Nova Biomedical und Radiometer) wurden benutzt zur BE-Berechnung einer normalen arteriellen Blutprobe, einer arteriellen Blutprobe mit Hypoxie und einer solchen mit Hyperkapnie. Die Ergebnisse wurden mit den zugehörigen Angaben diverser Autoren (s. Literatur) verglichen.

Bei den Herstellerangaben zur BE-Berechnung sind folgende Anmerkungen notwendig: Da in den Bedienungsanleitungen sehr häufig Druckfehler enthalten sind (dies gilt auch für das NCCLS Document (4)), wurden ausschließlich vom jeweiligen Hersteller kontrollierte Formeln benutzt. Trotzdem bleibt nicht ausgeschlossen, daß die im Gerät verwendete Formel nicht identisch mit derjenigen der Bedienungsanleitung ist. Da die von der Fa. Mallinckrodt angegebenen Formeln einschließlich Druckfehler mit denen von Ciba Corning identisch sind, blieben sie hier unberücksichtigt.

Vom Autor wurde eine Modifizierung der von Müller-Plathe (2) angegebenen Berechnung des BE wie folgt vorgenommen:

Müller-Plathe (2) (weitgehend identisch mit Siggaard-Andersen (1)):

cHCO $_3^-$ = 0,0304×pCO $_2$ ×10 (pH-6,1) BE oxygeniert = (1-0,0143 x cHb)×{(cHCO} $_3^-$ -24)+ [(1,63×cHb+9,5)×(pH-7,4)]} BE aktuell = BE oxygeniert+0,2×cHb×(1-sO $_2$)

mit BE und cHCO $_3^-$ in mmol/l, pCO $_2$ in mmHg, cHb in g/dl und sO $_2$ als Fraktion.

Modifizierungen des Autors:

Berechnung von BE aktuell identisch mit BE oxygeniert, einheitlich BE genannt,

- mit 24,26 anstelle von 24 für die "normale" cHCO3 und
- mit einem negativen statt positiven Vorzeichen zwischen BE aktuell und BE oxygeniert,

also BE [mmol/l] = $(1-0.0143 \times cHb) \times \{(cHCO_3^- - 24.26) + [(1.63 \times cHb + 9.5) \times (pH - 7.4)]\}$ $-0.2 \times cHb \times (1-sO_2)$

Zur Überprüfung dieser modifizierten BE-Berechnung wurden Frischblut-Proben bei 37 °C mit titrimetrisch vorgegebenen BE-Werten von – 15 mmol/l, 0 mmol/l (Annahme) und + 15 mmol/l, definierten pCO₂-Werten von 20, 40 und 80 mmHg und pO₂-Werten von 0 und 100 mmHg (Corning Precision Gas Mixer 192) äquilibriert (IL-Tonometer 237), die O₂-Sättigung (sO₂, %) und Hb-Konzentration (cHb, g/dl) mit einem Hämoxymeter (OSM 3 Radiometer) kontrolliert und die pH-Werte (Radiometer, BMS 2 Blood Micro System) gemessen.

Ergebnisse

Für eine arterielle Probe (cHb 15 g/dl) mit normalem Status (pH 7,4/pCO₂ 40 mmHg/sO₂ 96%) schwanken die BE-Werte der Geräte zwischen 0 und + 0,8 mmol/l, für eine solche mit Hypoxie (pH 7,44/pCO₂ 40 mmHg/sO₂ 0%) zwischen - 1,1 und +5,7 mmol/l und für eine solche mit Hyperkapnie (pH 7,29/pCO₂ 60 mmHg/sO₂ 96%) zwischen + 0,1 und + 2,9 mmol/l, wie aus Tabelle 1 zu ersehen ist. Die Ergebnisse der Überprüfung der modifizierten BE-Berechnung mit äquilibrierten Frischblut-Proben sind in Tabelle 2 zusammengefaßt.

Die Differenzen zwischen insgesamt 60 oxygenierten und desoxygenierten Blutproben liegen deutlich unter jeweils 1 mmol/l, ihre Summation ergibt einen Wert von nur – 0,16 mmol/l. Somit ist die Berechnungsformel geeignet, nur noch einen BE-Wert für alle Blutproben zu ermitteln und anzugeben. Der Normalwert eines BE von 0 mmol/l in unbehandelten Blutproben wird als Mittelwert von 39 Messungen

		Autor Hersteller	cHCO ₃ [mmol/I]	BE [mmol/l] oxygeniert	BE [mmol/l] aktuell
Arterie	lles Blut				
pH pCO ₂ cHb sO ₂	7,400 40 mmHg 15 g/dl 0,96	Siggaard-Andersen (1) Müller-Plathe (2) Thews et al. (3)* Autor Ciba Corning (278) AVL NCCLS (4) Radiometer IL Nova	24,20 24,26 24 24,26 24,74 24,18 24,77 24,26 25,01 25,01	+0,1 +0,2 +0,6 ±0 +0,1 +0,8 +0,8	+0,2 +0,3 ±0 -0,1 +0,4 ±0
Arterie	lles Blut mit Hype	oxie			
pH pCO ₂ cHb sO ₂	7,440 40 mmHg 15 g/dl 0	Siggaard-Andersen (1) Müller-Plathe (2) Thews et al. (3)* Autor Ciba Corning (278) AVL NCCLS (4) Radiometer IL Nova	26,53 26,60 23 26,60 27,13 26,52 27,16 26,73 27,42 27,42	+0,1 +3,1 +3,4 +2,8 +2,9 +3,6 +3,6	+ 3,1 +6,1 ± 0 -0,1 -1,1 +5,7
Arterie	lles Blut mit Hype	erkapnie			
pH pCO ₂ cHb sO ₂	7,290 60 mmHg 15 g/dl 0,96	Siggaard-Andersen (1) Müller-Plathe (2) Thews et al. (3)* Autor Ciba Corning (278) AVL NCCLS (4) Radiometer IL Nova	28,18 28,25 28 28,25 28,81 28,15 27,65 27,95 29,12 29,15	+0,2 +0,4 +0,8 -0,3 +0,3 +1,5 +1,5	+ 0,3 + 0,5 ± 0 + 0,1 + 2,9 + 0,1

Tab. 1 Berechnung des Base Excess (BE, mmol/l). BE oxygeniert, d.h. unter Annahme einer O₂-Sättigung von annähernd 100 %, und BE aktuell, d.h. unter Berücksichtigung der aktuellen O2-Sättigung unter Verwendung der berechneten HCO₃-Konzentration im Plasma $(CHCO_3^-).$

Tab. 2 BE-Meßwerte im Frisch-Blut. Messung von pH, cHb (g/dl) und O₂-Sättigung im oxygenierten (oxy) und desoxygenierten (desoxy) Blut nach Äquilibrierung auf die angegebenen pCO₂-Werte (mmHg) und Berechnung des BE-Wertes (mmol/l) nach der vom Autor modifizierten Gleichung.

BE	pCO ₂	BE		BE-Differenz	
Vorgabe		desoxy	оху	(BE oxy-BE desoxy	
± 0	20	+ 0,24 ± 1,64 (n = 10)	150,490,500	-0,58	
- 15,0	40	±1,66	- 15,65 ± 1,54 (n = 11)	+0,08	
± 0	40	-0,38 ±1,69 (n = 19)		+0,20	
+ 15,0	40	+ 14,88 ± 1,32 (n = 10)		-0,21	
± 0	80	-0,82 ±1,77 (n = 10)		+0,33	

Tab. 3 Bezeichnungen für den Base Excess-Wert.

Autor Hersteller		BE oxygeniert sO ₂ 100 %	Verknüpfung: Berechnung bzw. Äquilibrierung	BE aktuell sO ₂ aktue			
Siggaard-Andersen (1)		BE(ox)	←	BE(act)			
Müller-Plathe (2)		BA(ox)	\rightarrow	BA(act)			
Thews et al. (3)		?		?*			
Autor		BE	identisch (ohne Zusätze)	BE			
Ciba Corning		B.E.vt		B.E.vv			
AVL				BE			
NCCLS (4)		BE					
Radiometer		ABE					
IL		BEb					
Nova		BE-B					
BA ABE BEb bzw. BE-B BA(ox) bzw. BE(ox) BA(act) bzw. BE(act)	für Basenabweichung für Actual Base Excess für Base Excess im Blut für vollständig oxygeniertes Blut, bei Müller-Plathe an- genommen, bei Siggaard-Andersen berechnet aus BE(act) für aktuelle Sättigung, bei Siggaard-Andersen nicht berücksichtigt, bei Müller-Plathe aus BA(ox) berechnet Ermittlung im Nomogramm						

^{*} nomographisch

mit -0,96 mmol/l für das desoxygenierte und mit -1,01 mmol/l für das oxygenierte Blut bestimmt. Dies ist deshalb realistisch, weil während der Äquilibrierung über 30-45 min bei 37 °C eine BE-Abnahme zu erwarten ist; diese wird bei Raumtemperatur mit einem Wert von -0,77 mmol/l für 30 min angegeben (2).

Die Bezeichnungen für den Base Excess differieren gemäß Tabelle 3 je nach Autor und Hersteller.

Schlußfolgerungen

- 1. Es wird der Vorschlag unterbreitet,
 - die Nomenklatur zu vereinheitlichen,
 - grundsätzlich nur einen BE-Wert zu berechnen und anzuzeigen und
 - die O₂-Sättigung immer mit zu berücksichtigen.
- Der Vorteil dieser Übereinkunft wäre, daß die Diagnostik des BE
 - zur Reduktion arterieller Punktionen und
 - aus jeder arteriellen, venösen oder gemischt-venösen Blutprobe erfolgen könnte.

Diesem Vorschlag wird ab 1995 bei den neuen Gerätetypen der Firma AVL gefolgt, bei Geräten der Firma Ciba Corning wird die O₂-Sättigung beim Gerätetyp 178 nicht, beim Gerätetyp 278 doch und bei Geräten der 800er Serie nicht mehr berücksichtigt, die Firma Radiometer wird diesen Parameter bei Blutgasanalysatoren der zukünftigen Generation mit einschließen, während bei der Firma Nova Biomedical geplant ist, die Berücksichtigung als fakultative Möglichkeit bei neuen Geräten einzubauen.

Literatur

¹ Siggaard-Andersen O: The acid-base status of the blood (4th ed.). Munksgaard, Copenhagen 1974.

Müller-Plathe O: Säure-Basen-Haushalt und Blutgase (2. Aufl.).

Thieme, Stuttgart 1982.

³ Thews G, Schultehinrichs D, v. Mengden H-J: Revised nomograms for the O₂ dependence of the acid-base status. Respir. Physiol. 1969;6:160–167.

⁴ National Committee for Clinical Laboratory Standards (NCCLS): Definitions of quantities and conventions related to blood pH and gas analysis, second edition. NCCLS Document C 12-T2 (1991).